On random interpolation

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Random Interpolation

In a recent paper Salem and Zygmund [1] proved the following result : Put 2TCv a " = avn~ _ 2n (v = 0, 1,. . ., 2n)-{-1 and denote the 99,'(t) the v-th Rademacher function. Denote by L.(t, 0) the unique trigonometric polynomial (in 0) of degree not exceeding n for Denote Mjt) = max I L,, (t, 0)1. Then for almost all t 050<2a M,, t) lim BLOCKIN~ <_ 2. (log n)a n=~ P. ERDÖS I am going to prove th...

متن کامل

Interpolation of Random Hyperplanes

Let {(Zi,Wi) : i = 1, . . . , n} be uniformly distributed in [0, 1]d × G(k, d), where G(k, d) denotes the space of k-dimensional linear subspaces of Rd. For a differentiable function f : [0, 1]k → [0, 1]d, we say that f interpolates (z,w) ∈ [0, 1]d × G(k, d) if there exists x ∈ [0, 1]k such that f(x) = z and ~ f(x) = w, where ~ f(x) denotes the tangent space at x defined by f . For a smoothness...

متن کامل

On Sparser Random 3SAT Refutation Algorithms and Feasible Interpolation

We formalize a combinatorial principle, called the 3XOR principle, due to Feige, Kim and Ofek [FKO06], as a family of unsatisfiable propositional formulas for which refutations of small size in any propositional proof system that possesses the feasible interpolation property imply an efficient deterministic refutation algorithm for random 3SAT with n variables and Ω(n) clauses. Such small size ...

متن کامل

A feasible interpolation for random resolution

We show how to apply the general feasible interpolation theorem for semantic derivations from [6] to random resolution defined by [3]. As a consequence we get a lower bound for random resolution refutations of the clique-coloring formulas. Assume A1, . . . , Am, B1, . . . , Bl is an unsatisfiable set of clauses in variables partitioned into three disjoint sets p, q and r, with clauses Ai contai...

متن کامل

Kriging for interpolation in random simulation

Whenever simulation requires much computer time, interpolation is needed. There are several interpolation techniques in use (for example, linear regression), but this paper focuses on Kriging. This technique was originally developed in geostatistics by D. G. Krige, and has recently been widely applied in deterministic simulation. This paper, however, focuses on random or stochastic simulation. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Australian Mathematical Society

سال: 1960

ISSN: 0004-9735

DOI: 10.1017/s1446788700025507